Aligning Bayesian Network Classifiers with Medical Contexts
نویسندگان
چکیده
While for many problems in medicine classification models are being developed, Bayesian network classifiers do not seem to have become as widely accepted within the medical community as logistic regression models. We compare first-order logistic regression and naive Bayesian classification in the domain of reproductive medicine and demonstrate that the two techniques can result in models of comparable performance. For Bayesian network classifiers to become more widely accepted within the medical community, we feel that they should be better aligned with their context of application. We describe how to incorporate well-known concepts of clinical relevance in the process of constructing and evaluating Bayesian network classifiers to achieve such an alignment.
منابع مشابه
Conditional Log-Likelihood for Continuous Time Bayesian Network Classifiers
Continuous time Bayesian network classifiers are designed for analyzing multivariate streaming data when time duration of events matters. New continuous time Bayesian network classifiers are introduced while their conditional log-likelihood scoring function is developed. A learning algorithm, combining conditional log-likelihood with Bayesian parameter estimation is developed. Classification ac...
متن کاملFloating search algorithm for structure learning of Bayesian network classifiers
This paper presents a floating search approach for learning the network structure of Bayesian network classifiers. A Bayesian network classifier is used which in combination with the search algorithm allows simultaneous feature selection and determination of the structure of the classifier. The introduced search algorithm enables conditional exclusions of previously added attributes and/or arcs...
متن کاملBayesian Network Classifiers Versus k-NN Classifier Using Sequential Feature Selection
The aim of this paper is to compare Bayesian network classifiers to the k-NN classifier based on a subset of features. This subset is established by means of sequential feature selection methods. Experimental results show that Bayesian network classifiers more often achieve a better classification rate on different data sets than selective k-NN classifiers. The k-NN classifier performs well in ...
متن کاملModular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities
Recently, recognizing a user's daily activity using a smartphone and wearable sensors has become a popular issue. However, in contrast with the ideal definition of an experiment, there could be numerous complex activities in real life with respect to its various background and contexts: time, space, age, culture, and so on. Recognizing these complex activities with limited low-power sensors, co...
متن کاملBeyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors †
This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, drivin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009